Compare commits

12 Commits

Author SHA1 Message Date
ce3baff6cc optimize with new column names 2026-01-19 02:29:38 +01:00
a1a8abfb8e beautiful plot 2026-01-19 01:26:14 +01:00
8f34f06578 ugly plot 2026-01-19 01:04:00 +01:00
eabde3fcb1 optimize 2026-01-19 00:52:55 +01:00
2a715233ee seaborn styled table 2026-01-19 00:43:29 +01:00
a415632552 updated git ignore and new files 2026-01-19 00:39:13 +01:00
16aa6c206e gitignore update 2026-01-19 00:26:27 +01:00
c11a81548a recall the failed call 2026-01-18 23:35:34 +01:00
e453cf379c Adjusting import 2026-01-18 22:37:29 +01:00
454273a6cb backing up Edss total 2026-01-18 22:32:24 +01:00
2cab5fd9b3 exx 2026-01-18 22:06:53 +01:00
90436584f8 Experiment branch commit 2026-01-18 22:04:27 +01:00
6 changed files with 948 additions and 6 deletions

21
.gitignore vendored
View File

@@ -1,7 +1,16 @@
# Ignore all contents of these directories
!**/*.py
/Data/
/attach/
/results/
/enarcelona/
# 1. Broad Ignores
/Data/*
/attach/*
/results/*
/enarcelona/*
.env
__pycache__/
*.pyc
# 2. Ignore virtual environments COMPLETELY
# This must come BEFORE the unignore rule
env*/
# 3. The "Unignore" rule (Whitelisting)
# We only unignore .py files that aren't already blocked by the rules above
!**/*.py

570
Data/show_plots.py Normal file
View File

@@ -0,0 +1,570 @@
# %% Scatter
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# Load your data from TSV file
file_path = '/home/shahin/Lab/Doktorarbeit/Barcelona/Data/join_MS_Briefe_400_with_unique_id_SHA3_explore_cleaned_results+MS_Briefe_400_with_unique_id_SHA3_explore_cleaned.tsv'
df = pd.read_csv(file_path, sep='\t')
# Replace comma with dot for numeric conversion in GT_EDSS and LLM_Results
df['GT_EDSS'] = df['GT_EDSS'].astype(str).str.replace(',', '.')
df['LLM_Results'] = df['LLM_Results'].astype(str).str.replace(',', '.')
# Convert to float (handle invalid entries gracefully)
df['GT_EDSS'] = pd.to_numeric(df['GT_EDSS'], errors='coerce')
df['LLM_Results'] = pd.to_numeric(df['LLM_Results'], errors='coerce')
# Drop rows where either column is NaN
df_clean = df.dropna(subset=['GT_EDSS', 'LLM_Results'])
# Create scatter plot
plt.figure(figsize=(8, 6))
plt.scatter(df_clean['GT_EDSS'], df_clean['LLM_Results'], alpha=0.7, color='blue')
# Add labels and title
plt.xlabel('GT_EDSS')
plt.ylabel('LLM_Results')
plt.title('Comparison of GT_EDSS vs LLM_Results')
# Optional: Add a diagonal line for reference (perfect prediction)
plt.plot([0, max(df_clean['GT_EDSS'])], [0, max(df_clean['GT_EDSS'])], color='red', linestyle='--', label='Perfect Prediction')
plt.legend()
# Show plot
plt.grid(True)
plt.tight_layout()
plt.show()
##
# %% Bland0-altman
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
# Load your data from TSV file
file_path = '/home/shahin/Lab/Doktorarbeit/Barcelona/Data/join_MS_Briefe_400_with_unique_id_SHA3_explore_cleaned_results+MS_Briefe_400_with_unique_id_SHA3_explore_cleaned.tsv'
df = pd.read_csv(file_path, sep='\t')
# Replace comma with dot for numeric conversion in GT_EDSS and LLM_Results
df['GT_EDSS'] = df['GT_EDSS'].astype(str).str.replace(',', '.')
df['LLM_Results'] = df['LLM_Results'].astype(str).str.replace(',', '.')
# Convert to float (handle invalid entries gracefully)
df['GT_EDSS'] = pd.to_numeric(df['GT_EDSS'], errors='coerce')
df['LLM_Results'] = pd.to_numeric(df['LLM_Results'], errors='coerce')
# Drop rows where either column is NaN
df_clean = df.dropna(subset=['GT_EDSS', 'LLM_Results'])
# Create Bland-Altman plot
f, ax = plt.subplots(1, figsize=(8, 5))
sm.graphics.mean_diff_plot(df_clean['GT_EDSS'], df_clean['LLM_Results'], ax=ax)
# Add labels and title
ax.set_title('Bland-Altman Plot: GT_EDSS vs LLM_Results')
ax.set_xlabel('Mean of GT_EDSS and LLM_Results')
ax.set_ylabel('Difference between GT_EDSS and LLM_Results')
# Display Bland-Altman plot
plt.tight_layout()
plt.show()
# Print some statistics
mean_diff = np.mean(df_clean['GT_EDSS'] - df_clean['LLM_Results'])
std_diff = np.std(df_clean['GT_EDSS'] - df_clean['LLM_Results'])
print(f"Mean difference: {mean_diff:.3f}")
print(f"Standard deviation of differences: {std_diff:.3f}")
print(f"95% Limits of Agreement: [{mean_diff - 1.96*std_diff:.3f}, {mean_diff + 1.96*std_diff:.3f}]")
##
# %% Confusion matrix
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sns
# Load your data from TSV file
file_path = '/home/shahin/Lab/Doktorarbeit/Barcelona/Data/Join_edssandsub.tsv'
df = pd.read_csv(file_path, sep='\t')
# Replace comma with dot for numeric conversion in GT.EDSS and result.EDSS
df['GT.EDSS'] = df['GT.EDSS'].astype(str).str.replace(',', '.')
df['result.EDSS'] = df['result.EDSS'].astype(str).str.replace(',', '.')
# Convert to float (handle invalid entries gracefully)
df['GT.EDSS'] = pd.to_numeric(df['GT.EDSS'], errors='coerce')
df['result.EDSS'] = pd.to_numeric(df['result.EDSS'], errors='coerce')
# Drop rows where either column is NaN
df_clean = df.dropna(subset=['GT.EDSS', 'result.EDSS'])
# For confusion matrix, we need to categorize the values
# Let's create categories up to 10 (0-1, 1-2, 2-3, ..., 9-10)
def categorize_edss(value):
if pd.isna(value):
return np.nan
elif value <= 1.0:
return '0-1'
elif value <= 2.0:
return '1-2'
elif value <= 3.0:
return '2-3'
elif value <= 4.0:
return '3-4'
elif value <= 5.0:
return '4-5'
elif value <= 6.0:
return '5-6'
elif value <= 7.0:
return '6-7'
elif value <= 8.0:
return '7-8'
elif value <= 9.0:
return '8-9'
elif value <= 10.0:
return '9-10'
else:
return '10+'
# Create categorical versions
df_clean['GT.EDSS_cat'] = df_clean['GT.EDSS'].apply(categorize_edss)
df_clean['result.EDSS_cat'] = df_clean['result.EDSS'].apply(categorize_edss)
# Remove any NaN categories
df_clean = df_clean.dropna(subset=['GT.EDSS_cat', 'result.EDSS_cat'])
# Create confusion matrix
cm = confusion_matrix(df_clean['GT.EDSS_cat'], df_clean['result.EDSS_cat'],
labels=['0-1', '1-2', '2-3', '3-4', '4-5', '5-6', '6-7', '7-8', '8-9', '9-10'])
# Plot confusion matrix
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['0-1', '1-2', '2-3', '3-4', '4-5', '5-6', '6-7', '7-8', '8-9', '9-10'],
yticklabels=['0-1', '1-2', '2-3', '3-4', '4-5', '5-6', '6-7', '7-8', '8-9', '9-10'])
plt.title('Confusion Matrix: Ground truth EDSS vs interferred EDSS (Categorized 0-10)')
plt.xlabel('LLM Generated EDSS')
plt.ylabel('Ground Truth EDSS')
plt.tight_layout()
plt.show()
# Print classification report
print("Classification Report:")
print(classification_report(df_clean['GT.EDSS_cat'], df_clean['result.EDSS_cat']))
# Print raw counts
print("\nConfusion Matrix (Raw Counts):")
print(cm)
##
# %% Classification
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
import numpy as np
# Load your data from TSV file
file_path ='/home/shahin/Lab/Doktorarbeit/Barcelona/Data/Join_edssandsub.tsv'
df = pd.read_csv(file_path, sep='\t')
# Check data structure
print("Data shape:", df.shape)
print("First few rows:")
print(df.head())
print("\nColumn names:")
for col in df.columns:
print(f" {col}")
# Function to safely convert to boolean
def safe_bool_convert(series):
'''Safely convert series to boolean, handling various input formats'''
# Convert to string first, then to boolean
series_str = series.astype(str).str.strip().str.lower()
# Handle different true/false representations
bool_map = {
'true': True, '1': True, 'yes': True, 'y': True,
'false': False, '0': False, 'no': False, 'n': False
}
converted = series_str.map(bool_map)
# Handle remaining NaN values
converted = converted.fillna(False) # or True, depending on your preference
return converted
# Convert columns safely
if 'result.klassifizierbar' in df.columns:
print("\nresult.klassifizierbar column info:")
print(df['result.klassifizierbar'].head(10))
print("Unique values:", df['result.klassifizierbar'].unique())
df['result.klassifizierbar'] = safe_bool_convert(df['result.klassifizierbar'])
print("After conversion:")
print(df['result.klassifizierbar'].value_counts())
if 'GT.klassifizierbar' in df.columns:
print("\nGT.klassifizierbar column info:")
print(df['GT.klassifizierbar'].head(10))
print("Unique values:", df['GT.klassifizierbar'].unique())
df['GT.klassifizierbar'] = safe_bool_convert(df['GT.klassifizierbar'])
print("After conversion:")
print(df['GT.klassifizierbar'].value_counts())
# Create bar chart showing only True values for klassifizierbar
if 'result.klassifizierbar' in df.columns and 'GT.klassifizierbar' in df.columns:
# Get counts for True values only
llm_true_count = df['result.klassifizierbar'].sum()
gt_true_count = df['GT.klassifizierbar'].sum()
# Plot using matplotlib directly
fig, ax = plt.subplots(figsize=(8, 6))
x = np.arange(2)
width = 0.35
bars1 = ax.bar(x[0] - width/2, llm_true_count, width, label='LLM', color='skyblue', alpha=0.8)
bars2 = ax.bar(x[1] + width/2, gt_true_count, width, label='GT', color='lightcoral', alpha=0.8)
# Add value labels on bars
ax.annotate(f'{llm_true_count}',
xy=(x[0], llm_true_count),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
ax.annotate(f'{gt_true_count}',
xy=(x[1], gt_true_count),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
ax.set_xlabel('Classification Status (klassifizierbar)')
ax.set_ylabel('Count')
ax.set_title('True Values Comparison: LLM vs GT for "klassifizierbar"')
ax.set_xticks(x)
ax.set_xticklabels(['LLM', 'GT'])
ax.legend()
plt.tight_layout()
plt.show()
# Create confusion matrix if both columns exist
if 'result.klassifizierbar' in df.columns and 'GT.klassifizierbar' in df.columns:
try:
# Ensure both columns are boolean
llm_bool = df['result.klassifizierbar'].fillna(False).astype(bool)
gt_bool = df['GT.klassifizierbar'].fillna(False).astype(bool)
cm = confusion_matrix(gt_bool, llm_bool)
# Plot confusion matrix
fig, ax = plt.subplots(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['False ', 'True '],
yticklabels=['False', 'True '],
ax=ax)
ax.set_xlabel('LLM Predictions ')
ax.set_ylabel('GT Labels ')
ax.set_title('Confusion Matrix: LLM vs GT for "klassifizierbar"')
plt.tight_layout()
plt.show()
print("Confusion Matrix:")
print(cm)
except Exception as e:
print(f"Error creating confusion matrix: {e}")
# Show final data info
print("\nFinal DataFrame info:")
print(df[['result.klassifizierbar', 'GT.klassifizierbar']].info())
##
# %% Boxplot
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
# Load your data from TSV file
file_path = '/home/shahin/Lab/Doktorarbeit/Barcelona/Data/join_results_unique.tsv'
df = pd.read_csv(file_path, sep='\t')
# Replace comma with dot for numeric conversion in GT.EDSS and result.EDSS
df['GT.EDSS'] = df['GT.EDSS'].astype(str).str.replace(',', '.')
df['result.EDSS'] = df['result.EDSS'].astype(str).str.replace(',', '.')
# Convert to float (handle invalid entries gracefully)
df['GT.EDSS'] = pd.to_numeric(df['GT.EDSS'], errors='coerce')
df['result.EDSS'] = pd.to_numeric(df['result.EDSS'], errors='coerce')
# Drop rows where either column is NaN
df_clean = df.dropna(subset=['GT.EDSS', 'result.EDSS'])
# 1. DEFINE CATEGORY ORDER
# This ensures the X-axis is numerically logical (0-1 comes before 1-2)
category_order = ['0-1', '1-2', '2-3', '3-4', '4-5', '5-6', '6-7', '7-8', '8-9', '9-10', '10+']
# Convert the column to a Categorical type with the specific order
df_clean['GT.EDSS_cat'] = pd.Categorical(df_clean['GT.EDSS'].apply(categorize_edss),
categories=category_order,
ordered=True)
plt.figure(figsize=(14, 8))
# 2. ADD HUE FOR LEGEND
# Assigning x to 'hue' allows Seaborn to generate a legend automatically
box_plot = sns.boxplot(
data=df_clean,
x='GT.EDSS_cat',
y='result.EDSS',
hue='GT.EDSS_cat', # Added hue
palette='viridis',
linewidth=1.5,
legend=True # Ensure legend is enabled
)
# 3. CUSTOMIZE PLOT
plt.title('Distribution of result.EDSS by GT.EDSS Category', fontsize=18, pad=20)
plt.xlabel('Ground Truth EDSS Category', fontsize=14)
plt.ylabel('LLM Predicted EDSS', fontsize=14)
# Move legend to the side or top
plt.legend(title="EDSS Categories", bbox_to_anchor=(1.05, 1), loc='upper left')
plt.xticks(rotation=45, ha='right', fontsize=10)
plt.grid(True, axis='y', alpha=0.3)
plt.tight_layout()
plt.show()
##
# %% Postproccessing Column names
import pandas as pd
# Read the TSV file
file_path = '/home/shahin/Lab/Doktorarbeit/Barcelona/Data/Join_edssandsub.tsv'
df = pd.read_csv(file_path, sep='\t')
# Create a mapping dictionary for German to English column names
column_mapping = {
'EDSS':'GT.EDSS',
'klassifizierbar': 'GT.klassifizierbar',
'Sehvermögen': 'GT.VISUAL_OPTIC_FUNCTIONS',
'Cerebellum': 'GT.CEREBELLAR_FUNCTIONS',
'Hirnstamm': 'GT.BRAINSTEM_FUNCTIONS',
'Sensibiliät': 'GT.SENSORY_FUNCTIONS',
'Pyramidalmotorik': 'GT.PYRAMIDAL_FUNCTIONS',
'Ambulation': 'GT.AMBULATION',
'Cerebrale_Funktion': 'GT.CEREBRAL_FUNCTIONS',
'Blasen-_und_Mastdarmfunktion': 'GT.BOWEL_AND_BLADDER_FUNCTIONS'
}
# Rename columns
df = df.rename(columns=column_mapping)
# Save the modified dataframe back to TSV file
df.to_csv(file_path, sep='\t', index=False)
print("Columns have been successfully renamed!")
print("Renamed columns:")
for old_name, new_name in column_mapping.items():
if old_name in df.columns:
print(f" {old_name} -> {new_name}")
##
# %% Styled table
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import dataframe_image as dfi
# Load data
df = pd.read_csv("/home/shahin/Lab/Doktorarbeit/Barcelona/Data/Join_edssandsub.tsv", sep='\t')
# 1. Identify all GT and result columns
gt_columns = [col for col in df.columns if col.startswith('GT.')]
result_columns = [col for col in df.columns if col.startswith('result.')]
print("GT Columns found:", gt_columns)
print("Result Columns found:", result_columns)
# 2. Create proper mapping between GT and result columns
# Handle various naming conventions (spaces, underscores, etc.)
column_mapping = {}
for gt_col in gt_columns:
base_name = gt_col.replace('GT.', '')
# Clean the base name for matching - remove spaces, underscores, etc.
# Try different matching approaches
candidates = [
f'result.{base_name}', # Exact match
f'result.{base_name.replace(" ", "_")}', # With underscores
f'result.{base_name.replace("_", " ")}', # With spaces
f'result.{base_name.replace(" ", "")}', # No spaces
f'result.{base_name.replace("_", "")}' # No underscores
]
# Also try case-insensitive matching
candidates.append(f'result.{base_name.lower()}')
candidates.append(f'result.{base_name.upper()}')
# Try to find matching result column
matched = False
for candidate in candidates:
if candidate in result_columns:
column_mapping[gt_col] = candidate
matched = True
break
# If no exact match found, try partial matching
if not matched:
# Try to match by removing special characters and comparing
base_clean = ''.join(e for e in base_name if e.isalnum() or e in ['_', ' '])
for result_col in result_columns:
result_base = result_col.replace('result.', '')
result_clean = ''.join(e for e in result_base if e.isalnum() or e in ['_', ' '])
if base_clean.lower() == result_clean.lower():
column_mapping[gt_col] = result_col
matched = True
break
print("Column mapping:", column_mapping)
# 3. Faster, vectorized computation using the corrected mapping
data_list = []
for gt_col, result_col in column_mapping.items():
print(f"Processing {gt_col} vs {result_col}")
# Convert to numeric, forcing errors to NaN
s1 = pd.to_numeric(df[gt_col], errors='coerce').astype(float)
s2 = pd.to_numeric(df[result_col], errors='coerce').astype(float)
# Calculate matches (abs difference <= 0.5)
diff = np.abs(s1 - s2)
matches = (diff <= 0.5).sum()
# Determine the denominator (total valid comparisons)
valid_count = diff.notna().sum()
if valid_count > 0:
percentage = (matches / valid_count) * 100
else:
percentage = 0
# Extract clean base name for display
base_name = gt_col.replace('GT.', '')
data_list.append({
'GT': base_name,
'Match %': round(percentage, 1)
})
# 4. Prepare Data
match_df = pd.DataFrame(data_list)
# Clean up labels: Replace underscores with spaces and capitalize
match_df['GT'] = match_df['GT'].str.replace('_', ' ').str.title()
match_df = match_df.sort_values('Match %', ascending=False)
# 5. Create a "Beautiful" Table using Seaborn Heatmap
def create_luxury_table(df, output_file="edss_agreement.png"):
# Set the aesthetic style
sns.set_theme(style="white", font="sans-serif")
# Prepare data for heatmap
plot_data = df.set_index('GT')[['Match %']]
# Initialize the figure
# Height is dynamic based on number of rows
fig, ax = plt.subplots(figsize=(8, len(df) * 0.6))
# Create a custom diverging color map (Deep Red -> Mustard -> Emerald)
# This looks more professional than standard 'RdYlGn'
cmap = sns.diverging_palette(15, 135, s=80, l=55, as_cmap=True)
# Draw the heatmap
sns.heatmap(
plot_data,
annot=True,
fmt=".1f",
cmap=cmap,
center=85, # Centers the color transition
vmin=50, vmax=100, # Range of the gradient
linewidths=2,
linecolor='white',
cbar=False, # Remove color bar for a "table" look
annot_kws={"size": 14, "weight": "bold", "family": "sans-serif"}
)
# Styling the Axes (Turning the heatmap into a table)
ax.set_xlabel("")
ax.set_ylabel("")
ax.xaxis.tick_top() # Move "Match %" label to top
ax.set_xticklabels(['Agreement (%)'], fontsize=14, fontweight='bold', color='#2c3e50')
ax.tick_params(axis='y', labelsize=12, labelcolor='#2c3e50', length=0)
# Add a thin border around the plot
for _, spine in ax.spines.items():
spine.set_visible(True)
spine.set_color('#ecf0f1')
plt.title('EDSS Subcategory Consistency Analysis', fontsize=16, pad=40, fontweight='bold', color='#2c3e50')
# Add a subtle footer
plt.figtext(0.5, 0.0, "Tolerance: ±0.5 points",
wrap=True, horizontalalignment='center', fontsize=10, color='gray', style='italic')
# Save with high resolution
plt.tight_layout()
plt.savefig(output_file, dpi=300, bbox_inches='tight')
print(f"Beautiful table saved as {output_file}")
# Execute
create_luxury_table(match_df)
# Run the function
save_styled_table(match_df)
# 6. Save as SVG
plt.savefig("agreement_table.svg", format='svg', dpi=300, bbox_inches='tight')
print("Successfully saved agreement_table.svg")
# Show plot if running in a GUI environment
plt.show()
##

135
Data/style2.py Normal file
View File

@@ -0,0 +1,135 @@
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import dataframe_image as dfi
# Load data
df = pd.read_csv("/home/shahin/Lab/Doktorarbeit/Barcelona/Data/Join_edssandsub.tsv", sep='\t')
# 1. Identify all GT and result columns
gt_columns = [col for col in df.columns if col.startswith('GT.')]
result_columns = [col for col in df.columns if col.startswith('result.')]
print("GT Columns found:", gt_columns)
print("Result Columns found:", result_columns)
# 2. Create proper mapping between GT and result columns
# Handle various naming conventions (spaces, underscores, etc.)
column_mapping = {}
for gt_col in gt_columns:
base_name = gt_col.replace('GT.', '')
# Clean the base name for matching - remove spaces, underscores, etc.
# Try different matching approaches
candidates = [
f'result.{base_name}', # Exact match
f'result.{base_name.replace(" ", "_")}', # With underscores
f'result.{base_name.replace("_", " ")}', # With spaces
f'result.{base_name.replace(" ", "")}', # No spaces
f'result.{base_name.replace("_", "")}' # No underscores
]
# Also try case-insensitive matching
candidates.append(f'result.{base_name.lower()}')
candidates.append(f'result.{base_name.upper()}')
# Try to find matching result column
matched = False
for candidate in candidates:
if candidate in result_columns:
column_mapping[gt_col] = candidate
matched = True
break
# If no exact match found, try partial matching
if not matched:
# Try to match by removing special characters and comparing
base_clean = ''.join(e for e in base_name if e.isalnum() or e in ['_', ' '])
for result_col in result_columns:
result_base = result_col.replace('result.', '')
result_clean = ''.join(e for e in result_base if e.isalnum() or e in ['_', ' '])
if base_clean.lower() == result_clean.lower():
column_mapping[gt_col] = result_col
matched = True
break
print("Column mapping:", column_mapping)
# 3. Faster, vectorized computation using the corrected mapping
data_list = []
for gt_col, result_col in column_mapping.items():
print(f"Processing {gt_col} vs {result_col}")
# Convert to numeric, forcing errors to NaN
s1 = pd.to_numeric(df[gt_col], errors='coerce').astype(float)
s2 = pd.to_numeric(df[result_col], errors='coerce').astype(float)
# Calculate matches (abs difference <= 0.5)
diff = np.abs(s1 - s2)
matches = (diff <= 0.5).sum()
# Determine the denominator (total valid comparisons)
valid_count = diff.notna().sum()
if valid_count > 0:
percentage = (matches / valid_count) * 100
else:
percentage = 0
# Extract clean base name for display
base_name = gt_col.replace('GT.', '')
data_list.append({
'GT': base_name,
'Match %': round(percentage, 1)
})
# 4. Prepare Data for Plotting
match_df = pd.DataFrame(data_list)
match_df = match_df.sort_values('Match %', ascending=False) # Sort for better visual flow
# 5. Create the Styled Gradient Table
def style_agreement_table(df):
return (df.style
.format({'Match %': '{:.1f}%'}) # Add % sign
.background_gradient(cmap='RdYlGn', subset=['Match %'], vmin=50, vmax=100) # Red to Green gradient
.set_properties(**{
'text-align': 'center',
'font-size': '12pt',
'border-collapse': 'collapse',
'border': '1px solid #D3D3D3'
})
.set_table_styles([
# Style the header
{'selector': 'th', 'props': [
('background-color', '#404040'),
('color', 'white'),
('font-weight', 'bold'),
('text-transform', 'uppercase'),
('padding', '10px')
]},
# Add hover effect
{'selector': 'tr:hover', 'props': [('background-color', '#f5f5f5')]}
])
.set_caption("EDSS Agreement Analysis: Ground Truth vs. Results (Tolerance ±0.5)")
)
# To display in a Jupyter Notebook:
styled_table = style_agreement_table(match_df)
styled_table
dfi.export(styled_table, "styled_table.png")
#styled_table.to_html("agreement_report.html")
# 6. Save as SVG
#plt.savefig("agreement_table.svg", format='svg', dpi=300, bbox_inches='tight')
#print("Successfully saved agreement_table.svg")
# Show plot if running in a GUI environment
plt.show()

74
Data/styled_tables.py Normal file
View File

@@ -0,0 +1,74 @@
import pandas as pd
import numpy as np
import seaborn as sns
# Sample data (replace with your actual df)
df = pd.read_csv("/home/shahin/Lab/Doktorarbeit/Barcelona/Data/Join_edssandsub.tsv", sep='\t')
# Identify GT and Result columns
gt_columns = [col for col in df.columns if col.startswith('GT.')]
result_columns = [col for col in df.columns if col.startswith('result.')]
# Create mapping
column_mapping = {}
for gt_col in gt_columns:
base_name = gt_col.replace('GT.', '')
result_col = f'result.{base_name}'
if result_col in result_columns:
column_mapping[gt_col] = result_col
# Function to compute match percentage for each GT-Result pair
def compute_match_percentages(df, column_mapping):
percentages = []
for gt_col, result_col in column_mapping.items():
count = 0
total = len(df)
for _, row in df.iterrows():
gt_val = row[gt_col]
result_val = row[result_col]
# Handle NaN values
if pd.isna(gt_val) or pd.isna(result_val):
continue
# Handle non-numeric values
try:
gt_float = float(gt_val)
result_float = float(result_val)
except (ValueError, TypeError):
# Skip rows with non-numeric values
continue
# Check if values are within 0.5 tolerance
if abs(gt_float - result_float) <= 0.5:
count += 1
percentage = (count / total) * 100
percentages.append({
'GT_Column': gt_col,
'Result_Column': result_col,
'Match_Percentage': round(percentage, 1)
})
return pd.DataFrame(percentages)
# Compute match percentages
match_df = compute_match_percentages(df, column_mapping)
# Create a pivot table for gradient display (optional but helpful)
pivot_table = match_df.set_index(['GT_Column', 'Result_Column'])['Match_Percentage'].unstack(fill_value=0)
# Apply gradient background
cm = sns.light_palette("green", as_cmap=True)
styled_table = pivot_table.style.background_gradient(cmap=cm, axis=None)
# Display result
print("Agreement Percentage Table (with gradient):")
styled_table
# Save the styled table to a file
styled_table.to_html("agreement_report.html")
print("Report saved to agreement_report.html")

5
app.py
View File

@@ -214,3 +214,8 @@ if __name__ == "__main__":
print(f"Results saved to {output_json}")
##
# %% name
eXXXXXXXX
##

149
total_app.py Normal file
View File

@@ -0,0 +1,149 @@
import time
import json
import os
from datetime import datetime
import pandas as pd
from openai import OpenAI
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# === CONFIGURATION ===
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENAI_BASE_URL = os.getenv("OPENAI_BASE_URL")
MODEL_NAME = "GPT-OSS-120B"
HEALTH_URL = f"{OPENAI_BASE_URL}/health" # Placeholder - actual health check would need to be implemented
CHAT_URL = f"{OPENAI_BASE_URL}/chat/completions"
# File paths
INPUT_CSV = "/home/shahin/Lab/Doktorarbeit/Barcelona/Data/MS_Briefe_400_with_unique_id_SHA3_explore_cleaned_unique.csv"
EDSS_INSTRUCTIONS_PATH = "/home/shahin/Lab/Doktorarbeit/Barcelona/attach/Komplett.txt"
#GRAMMAR_FILE = "/home/shahin/Lab/Doktorarbeit/Barcelona/attach/just_edss_schema.gbnf"
# Initialize OpenAI client
client = OpenAI(
api_key=OPENAI_API_KEY,
base_url=OPENAI_BASE_URL
)
# Read EDSS instructions from file
with open(EDSS_INSTRUCTIONS_PATH, 'r') as f:
EDSS_INSTRUCTIONS = f.read().strip()
# === RUN INFERENCE 2 ===
def run_inference(patient_text, max_retries=3):
prompt = f'''Du bist ein medizinischer Assistent, der spezialisiert darauf ist, EDSS-Scores (Expanded Disability Status Scale) sowie alle Unterkategorien aus klinischen Berichten zu extrahieren.
### Regeln für die Ausgabe:
1. **Reason**: Erstelle eine prägnante Zusammenfassung (max. 400 Zeichen) der Befunde auf **DEUTSCH**, die zur Einstufung führen.
2. **klassifizierbar**:
- Setze dies auf **true**, wenn ein EDSS-Wert identifiziert, berechnet oder basierend auf den klinischen Hinweisen plausibel geschätzt werden kann.
- Setze dies auf **false**, NUR wenn die Daten absolut unzureichend oder so widersprüchlich sind, dass keinerlei Einstufung möglich ist.
3. **EDSS**:
- Dieses Feld ist **VERPFLICHTEND**, wenn "klassifizierbar" auf true steht.
- Es muss eine Zahl zwischen 0.0 und 10.0 sein.
- Versuche stets, den EDSS-Wert so präzise wie möglich zu bestimmen, auch wenn die Datenlage dünn ist (nutze verfügbare Informationen zu Gehstrecke und Funktionssystemen).
- Dieses Feld **DARF NICHT ERSCHEINEN**, wenn "klassifizierbar" auf false steht.
4. **Unterkategorien**:
- Extrahiere alle folgenden Unterkategorien aus dem Bericht:
- VISUAL OPTIC FUNCTIONS (max. 6.0)
- BRAINSTEM FUNCTIONS (max. 6.0)
- PYRAMIDAL FUNCTIONS (max. 6.0)
- CEREBELLAR FUNCTIONS (max. 6.0)
- SENSORY FUNCTIONS (max. 6.0)
- BOWEL AND BLADDER FUNCTIONS (max. 6.0)
- CEREBRAL FUNCTIONS (max. 6.0)
- AMBULATION (max. 10.0)
- Jede Unterkategorie sollte eine Zahl zwischen 0.0 und der jeweiligen Obergrenze enthalten, wenn sie klassifizierbar ist
- Wenn eine Unterkategorie nicht klassifizierbar ist, setze den Wert auf null
### Einschränkungen:
- Erfinde keine Fakten, aber nutze klinische Herleitungen aus dem Bericht, um den EDSS und die Unterkategorien zu bestimmen.
- Priorisiere die Vergabe eines EDSS-Wertes gegenüber der Markierung als nicht klassifizierbar.
- Halte dich strikt an die JSON-Struktur.
- Die Unterkategorien müssen immer enthalten sein, auch wenn sie null sind.
EDSS-Bewertungsrichtlinien:
{EDSS_INSTRUCTIONS}
Patientenbericht:
{patient_text}
'''
start_time = time.time()
for attempt in range(max_retries + 1):
try:
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You extract EDSS scores and all subcategories. You prioritize providing values even if data is partial, by using clinical inference."
},
{
"role": "user",
"content": prompt
}
],
model=MODEL_NAME,
max_tokens=2048,
temperature=0.0,
response_format={"type": "json_object"}
)
content = response.choices[0].message.content
if content is None or content.strip() == "":
raise ValueError("API returned empty or None response content")
parsed = json.loads(content)
inference_time = time.time() - start_time
return {
"success": True,
"result": parsed,
"inference_time_sec": inference_time
}
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
if attempt < max_retries:
time.sleep(2 ** attempt) # Exponential backoff
continue
else:
print("All retries exhausted.")
return {
"success": False,
"error": str(e),
"inference_time_sec": -1
}
# === BUILD PATIENT TEXT ===
def build_patient_text(row):
# Handle potential NaN or None values in the row
summary = str(row.get("T_Zusammenfassung", "")) if pd.notna(row.get("T_Zusammenfassung")) else ""
diagnoses = str(row.get("Diagnosen", "")) if pd.notna(row.get("Diagnosen")) else ""
clinical = str(row.get("T_KlinBef", "")) if pd.notna(row.get("T_KlinBef")) else ""
findings = str(row.get("T_Befunde", "")) if pd.notna(row.get("T_Befunde")) else ""
return "\n".join([summary, diagnoses, clinical, findings]).strip()
if __name__ == "__main__":
# Read CSV file ONLY inside main block
df = pd.read_csv(INPUT_CSV, sep=';')
results = []
# Process each row
for idx, row in df.iterrows():
print(f"Processing row {idx + 1}/{len(df)}")
try:
patient_text = build_patient_text(row)
result = run_inference(patient_text)
# Add unique_id and MedDatum to result for tracking
result["unique_id"] = row.get("unique_id", f"row_{idx}")
result["MedDatum"] = row.get("MedDatum", None)
results.append(result)
print(json.dumps(result, indent=2, ensure_ascii=False))
except Exception as e:
print(f"Error processing row {idx}: {e}")
results.append({
"success": False,
"error": str(e),
"unique_id": row.get("unique_id", f"row_{idx}"),
"MedDatum": row.get("MedDatum", None)
})
# Save results to a JSON file
output_json = INPUT_CSV.replace(".csv", "_results_total.json")
with open(output_json, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"Results saved to {output_json}")