Files
EDSS-calc/Data/style2.py
2026-01-19 01:26:14 +01:00

136 lines
4.5 KiB
Python

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import dataframe_image as dfi
# Load data
df = pd.read_csv("/home/shahin/Lab/Doktorarbeit/Barcelona/Data/Join_edssandsub.tsv", sep='\t')
# 1. Identify all GT and result columns
gt_columns = [col for col in df.columns if col.startswith('GT.')]
result_columns = [col for col in df.columns if col.startswith('result.')]
print("GT Columns found:", gt_columns)
print("Result Columns found:", result_columns)
# 2. Create proper mapping between GT and result columns
# Handle various naming conventions (spaces, underscores, etc.)
column_mapping = {}
for gt_col in gt_columns:
base_name = gt_col.replace('GT.', '')
# Clean the base name for matching - remove spaces, underscores, etc.
# Try different matching approaches
candidates = [
f'result.{base_name}', # Exact match
f'result.{base_name.replace(" ", "_")}', # With underscores
f'result.{base_name.replace("_", " ")}', # With spaces
f'result.{base_name.replace(" ", "")}', # No spaces
f'result.{base_name.replace("_", "")}' # No underscores
]
# Also try case-insensitive matching
candidates.append(f'result.{base_name.lower()}')
candidates.append(f'result.{base_name.upper()}')
# Try to find matching result column
matched = False
for candidate in candidates:
if candidate in result_columns:
column_mapping[gt_col] = candidate
matched = True
break
# If no exact match found, try partial matching
if not matched:
# Try to match by removing special characters and comparing
base_clean = ''.join(e for e in base_name if e.isalnum() or e in ['_', ' '])
for result_col in result_columns:
result_base = result_col.replace('result.', '')
result_clean = ''.join(e for e in result_base if e.isalnum() or e in ['_', ' '])
if base_clean.lower() == result_clean.lower():
column_mapping[gt_col] = result_col
matched = True
break
print("Column mapping:", column_mapping)
# 3. Faster, vectorized computation using the corrected mapping
data_list = []
for gt_col, result_col in column_mapping.items():
print(f"Processing {gt_col} vs {result_col}")
# Convert to numeric, forcing errors to NaN
s1 = pd.to_numeric(df[gt_col], errors='coerce').astype(float)
s2 = pd.to_numeric(df[result_col], errors='coerce').astype(float)
# Calculate matches (abs difference <= 0.5)
diff = np.abs(s1 - s2)
matches = (diff <= 0.5).sum()
# Determine the denominator (total valid comparisons)
valid_count = diff.notna().sum()
if valid_count > 0:
percentage = (matches / valid_count) * 100
else:
percentage = 0
# Extract clean base name for display
base_name = gt_col.replace('GT.', '')
data_list.append({
'GT': base_name,
'Match %': round(percentage, 1)
})
# 4. Prepare Data for Plotting
match_df = pd.DataFrame(data_list)
match_df = match_df.sort_values('Match %', ascending=False) # Sort for better visual flow
# 5. Create the Styled Gradient Table
def style_agreement_table(df):
return (df.style
.format({'Match %': '{:.1f}%'}) # Add % sign
.background_gradient(cmap='RdYlGn', subset=['Match %'], vmin=50, vmax=100) # Red to Green gradient
.set_properties(**{
'text-align': 'center',
'font-size': '12pt',
'border-collapse': 'collapse',
'border': '1px solid #D3D3D3'
})
.set_table_styles([
# Style the header
{'selector': 'th', 'props': [
('background-color', '#404040'),
('color', 'white'),
('font-weight', 'bold'),
('text-transform', 'uppercase'),
('padding', '10px')
]},
# Add hover effect
{'selector': 'tr:hover', 'props': [('background-color', '#f5f5f5')]}
])
.set_caption("EDSS Agreement Analysis: Ground Truth vs. Results (Tolerance ±0.5)")
)
# To display in a Jupyter Notebook:
styled_table = style_agreement_table(match_df)
styled_table
dfi.export(styled_table, "styled_table.png")
#styled_table.to_html("agreement_report.html")
# 6. Save as SVG
#plt.savefig("agreement_table.svg", format='svg', dpi=300, bbox_inches='tight')
#print("Successfully saved agreement_table.svg")
# Show plot if running in a GUI environment
plt.show()